
Вариант 10

Часть 1

Ответами к заданиям 1–23 являются слово, число или последовательность цифр или чисел. Запишите ответ в соответствующее поле справа. Каждый символ пишите без пробелов. Единицы измерения физических величин писать не нужно.

1 На рисунке представлен график зависимости модуля скорости v тела от времени t. Найдите путь, пройденный телом за время от момента времени 0 с до момента времени 5 с.

1

Ответ: ____ м.

2 Среднее расстояние между центрами Луны и Земли примерно 60 земных радиусов. Во сколько раз уменьшится сила гравитационного взаимодействия предмета массой 1 кг и Земли, если сначала предмет находится на поверхности Земли, а затем на лунной орбите?

2

Ответ: в ____ раз.

3 Атом массой m, движущийся со скоростью v, столкнулся с неподвижным атомом массой 2m. Каким суммарным импульсом обладают два атома в момент столкновения?

3

Ответ: ____

4 Период собственных малых вертикальных колебаний пружинного маятника равен 1,2 с. Каким станет период колебаний, если массу груза пружинного маятника увеличить в 4 раза?

4

Ответ: ____

5 В эксперименте по измерению пути, пройденному телом, заполнена таблица 1 зависимости пути от времени. Анализируя данные таблицы, выберите из приведённых ниже утверждений три правильных и укажите их номера.

5

t, c	S, M
0	0
1	10
2	20
3	30
4	40

- 1. За каждый из четырёх интервалов времени пройденный телом путь увеличивался на 10 м.
- 2. Движение тела равномерное.
- 3. Движение тела равноускоренное.
- 4. Ускорение тела было постоянным и равным 10 м/c^2 .
- 5. Скорость тела была постоянной и равной 10 м/с.

6 Комета движется по эллиптической орбите вокруг Солнца. Как изменяются перечисленные в таблице физические величины во время приближения кометы к Солнцу, если считать, что на нее действует только тяготение Солнца?

Для каждой величины определите соответствующий характер изменения:

- 1. не изменяется
- 2. только увеличивается по модулю
- 3. только уменьшается по модулю
- 4. увеличивается по модулю и изменяется по направлению
- 5. уменьшается по модулю и изменяется по направлению
- 6. увеличивается по модулю, не изменяется по направлению
- 7. уменьшается по модулю, не изменяется по направлению

Запишите выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

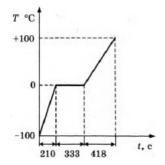
Скорость	Ускорение	Кинетическая энергия	Потенциальная энергия	ПОлная механическая энергия

7 Установите соответствие

Скорость улетающей от Земли ракеты на высоте h равна $\overline{\nu}$. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- А) потенциальная энергия
- Б) кинетическая энергия

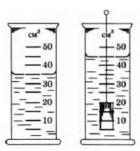

ФОРМУЛЫ

$$E_k = \frac{mv^2}{2}$$

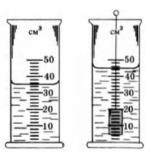
- 2) $A = Fs \times \cos\alpha$
- 3) E = mgh

$$E_k = \frac{l\omega^2}{2}$$

8 На графике представлено, как изменялась с течением времени температура 0,1 кг воды, находившейся в начальный момент в кристаллическом состоянии при температуре -100 °C, при постоянной мощности теплопередачи 100 Вт.



8


7

	По графику на рисунке определите, сколько секунд длился процесс плавления льда.		
	Ответ: с.		
9	Идеальный газ получил количество теплоты 300 Дж и совершил работу 100 Дж. Чему равно изменение внутренней энергии газа?	9	
	Ответ: Дж.		
10		10	
10	Во сколько раз увеличится давление идеального газа при уменьшении его объёма в 2 раза и увеличении его абсолютной температуры в 4 раза?		
	Ответ: в раз(а)		
11	Внутренняя энергия тела определяется	11	
	1. скоростью движения и массой тела		
	2. только кинетической энергией беспорядочного движения частиц, из которых состоит тело		
	3. только потенциальной энергией взаимодействия частиц, из которых состоит тело		
	4. кинетической энергией беспорядочного движения частиц и потенциальной энергией их" взаимодействия		
	Какое из приведённых выше утверждений верно?		
12	Графики А и Б процессов, происходящих в изолированной термодинамической системе,	12	
	построены в координатах p-V.		
	Установите соответствие между графиками и утверждениями, характеризующими изображённые на графиках процессы.		
	К каждой позиции левого столбца подберите соответствующую позицию правого столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.		
	ГРАФИКИ		
	A) 0 11 V		
	р 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	УТВЕРЖДЕНИЯ		
	1) В процессе термодинамического расширения газ совершает работу, его внутренняя энергия не изменяется.		
	2) В процессе термодинамического расширения газ совершает работу, его внутренняя энергия уменьшается.		
	3) В процессе термодинамического сжатия внешние силы совершают над газом работу, его внутренняя энергия не изменяется.		

	4) В процессе термодинамического сжатия внешние силы совершают над газом работу, его внутренняя энергия увеличивается.			
	A	Б		
13	На рисунке представлено расположение в горизстрелок вблизи прямого проводника с током, рарисунка. Значок «+» в кружке указывает, что то (какая) из представленных на рисунке магнитны имеют (имеет) такую ориентацию, какой она до создаваемого током в проводнике? Ответ запиш	асположенного перпендикулярно плоскости ок в проводнике направлен «от нас». Какие ых стрелок (левая, правая, верхняя, нижняя) олжна быть под действием магнитного поля,	13	
14	Резистор 1 с электрическим сопротивлением 3 сопротивлением 6 Ом включены последователь отношение количества теплоты, выделяющегос выделяющемуся на резисторе 2, за одинаковое Ответ:	ьно в цепь постоянного тока. Чему равно я на резисторе 1, к количеству теплоты,	14	
15	На рисунке представлены схемы хода лучей в глочков соответствует схема 1.	пазу человека. Случаю близорукого глаза без	15	
16	Чтобы как можно более точно найти объём телбыло предложено провести измерения, использ водой (см. рисунок). Сравнивать результаты измабсолютных инструментальных погрешностей и отсчёта. Каждую из учитываемых погрешностей измерительного цилиндра.	вуя на выбор два измерительных цилиндра с мерений учащиеся должны были с учётом измерения и абсолютных погрешностей	16	

Первый цилиндр

Второй цилиндр

Отвечая на вопрос задания, экспериментаторы получили четыре разных результата.

Из представленных ниже записей выберите верное значение измеренного объёма тела, полученное с наименьшей погрешностью.

- 1. первый цилиндр (10 ± 10) см³
- 2. первый цилиндр (10 \pm 5) см³
- 3. второй цилиндр (10 \pm 4) см 3
- 4. второй цилиндр (10 \pm 2) см³
- 17 К гальваническому элементу была подключена электрическая лампа. Что произойдёт с силой тока через эту лампу, напряжением и мощностью тока на ней при подключении параллельно с первым гальваническим элементом второго такого же элемента и параллельно с первой лампой второй такой же?

Для каждой величины определите соответствующий характер изменения:

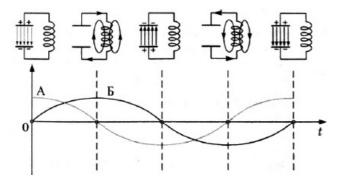
- 1. увеличение
- 2. уменьшение
- 3. неизменность

Запишите выбранные цифры для каждой физической величины. Цифры могут повторяться.

Сила тока	Напряжение	Мощность

Схемы и графики на рисунке иллюстрируют свободные электромагнитные колебания.

Колебания в контуре возникли при подключении концов катушки к обкладкам заряженного конденсатора (первая схема слева). Установите соответствие между графиками А и Б и значениями физических величин в момент, равный


Установите соответствие $\frac{1}{4}T$

СХЕМЫ И ГРАФИКИ

17

18

ID_978 5/13 neznaika.pro

ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

- 1) модуль силы тока в катушке максимален
- 2) модуль напряжения между обкладками конденсатора максимален
- 3) сила тока в катушке равна нулю
- 4) напряжение между обкладками конденсатора равно нулю

Запишите выбранные цифры под соответствующими буквами.

19 Чему равно число протонов и нейтронов в изотопе водорода протии?

19

Число протонов	Число нейтронов

20 Укажите условие красной границы фотоэффекта с поверхности тела с работой выхода А под действием света с частотой v. (напишите формулу)

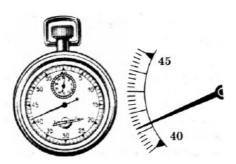
20

Ответ: ____

21 При быстром движении поршня в цилиндре закрытого воздушного насоса объём воздуха увеличился. Как изменяются давление, температура воздуха и внутренняя энергия при этом процессе?

21

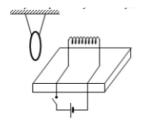
Для каждой величины определите соответствующий характер изменения:


- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Давление	Температура	Внутренняя энергия

22 На рисунке показан результат измерений периода колебаний математического маятника. Маятник совершил за это время 10 колебаний.


22

	Чему равен период колебаний Т маятника, если за погрешность измерений экспериментатор принял цену деления секундомера? Ответ: (±) с	
23	При выдвигании из металлического кольца северного полюса постоянного магнита кольцо притягивается к магниту. Это означает, что	23
	1. в кольце возникает индукционный ток, направленный по часовой стрелке при наблюдении со стороны магнита	
	2. в кольце возникает индукционный ток, направленный против часовой стрелки при наблюдении со стороны магнита	
	3. кольцо намагничивается, и возникший магнит обращён к выдвигаемому магниту северным полюсом	
	4. кольцо намагничивается, и возникший магнит обращён к выдвигаемому магниту южным полюсом	
24	Автомобиль, двигаясь по горизонтальной дороге совершает поворот по дуге окружности. Какой минимальный радиус окружности, при заданном коэффициенте трения шин о дорогу 0.4 и скорости автомобиля 10м/с, возможен без заноса. Ответ: м	24
		25
25	В лифте, движущемся вверх с ускорением 2 м/с 2 , находится пассажир массой 50 кг. Чему равен модуль силы веса пассажира?	23
	Ответ: Н	
26	Колебательный контур состоит из конденсатора электроёмкостью 50 мкФ и катушки	26
	индуктивностью 2 Гн. Чему равна циклическая частота ω свободных электромагнитных колебаний?	
	Ответ: Гц	

Полное правильное решение каждой из задач 27—31 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и при необходимости рисунок, поясняющий решение.

27 Замкнутое медное кольцо подвешено на длинных нитях вблизи катушки индуктивности, закрепленной на столе и подключенной к источнику постоянного тока. Первоначально электрическая цепь катушки разомкнута. Как будет двигаться кольцо при замыкании цепи?

- 28 Начальная скорость снаряда, выпущенного из пушки вертикально вверх, равна 500 м/с. В точке максимального подъема снаряд разорвался на два осколка. Первый упал на землю вблизи точки выстрела, имея скорость в 2 раза больше начальной скорости снаряда, а второй в этом же месте через 100 с после разрыва. Чему равно отношение массы первого осколка к массе второго осколка? Сопротивлением воздуха пренебречь
- 29 Один моль идеального одноатомного газа сначала нагрели, а затем охладили до первоначальнойтемпературы 300 К, уменьшив давление в 3 раза. Какое количество теплоты сообщено газу на участке 1-2?

- 30 Плоский воздушный конденсатор емкостью C = 100 пФ присоединен к источнику с ЭДС 10 В. Определите работу A, которую надо совершить, чтобы увеличить расстояние между пластинами в n = 2 раза.
- 31 Препарат активностью 1,7 * 10¹¹ частиц в секунду помещен в медный контейнер массой 0,5 кг. На сколько повысилась температура контейнера за 1 ч, если известно, что данное радиоактивное вещество испускает α-частицы энергией 5,3 МэВ? Считать, что энергия всех ачастиц полностью переходит во внутреннюю энергию контейнера. Теплоемкостью препарата и теплообменом с окружающей средой пренебречь

1 20

На промежутке от 0 до 2с тело разгонялось с постоянным ускорением, которое

 $a = \frac{1}{2}$ определяется по формуле $=rac{{f v}-{f v}_0}{\Delta \, t}$ где $\Delta \, t$ изменение времени. Путь пройденный

телом будет определяться

где V_0 начальная скорость. (на данном участке нулевая)

На участке между 2 и 3 секундой тело двигалось с постоянной скоростью 10м/с и путь будет определяться как S = vt

Далее произошла мгновенная остановка тела, и более тело не двигалось, а значит и путь был нулевой.

В итоге получаем на первом участке пути 10м и на втором тоже 10м, в сумме 20м.

2 3600

$$F = G \frac{m_1 m_2}{R^2}$$

 $F = G \frac{m_1 m_2}{R^2} \label{eq:F}$ закон всемирного тяготения где G гравитационная постоянная равная 6.67×10^{-11}

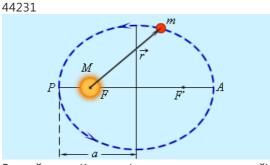
$$F_1 = G \frac{mM}{R_3^2}, F_2 = G \frac{mM}{(60R_3)^2}$$

Видим что разница сила уменьшится в 60х60=3600 раз.

3 mν

Импульс по определению это произведение массы тела на его скорость p = mvИз определения следует что второй атом имел нулевой импульс, а значит суммарный импульс был 0+импульс первого атома.

4 2,4


Период колебаний пружинного маятника
$$T=2\pi\sqrt{\frac{m}{k}}$$

5 125

Так как за каждую секунду тело проходило 10м мы можем заключить что тело двигалось без ускорения с начальной скоростью 10м/с

Движение, ускорение при котором = 0 называется равномерным.

6

Второй закон Кеплера (закон равных площадей). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади.

	Скорость меняется как по модулю, так и по направлению. Изменение направление скорости в перигее значительно больше чем в апогее, а это значит что и ускорение тоже меняется и по модулю и по направлению. Раз увеличивается скорость то увеличивается и кинетическая энергия. Полная энергия замкнутой системы ВСЕГДА постоянна. Потенциальная энергия зависит от расстояния между кометой и Солнцем и при движении к Солнцу она уменьшается. Энергия величина скалярная и направления не имеет.
7	31 Потенциальная энергия - это функция координат $E_p = mgh$, а кинетическая зависит от скорости движения объекта $E_k = \frac{mv^2}{2}$
8	333 Плавление- процесс при котором происходит переход из твердого агрегатного состояния вещества в жидкое. Данный процесс происходит при неизменной температуре.
9	200 Если газ получил 300Дж, а потратил 100Дж, то логично предположить что его внутренняя энергия изменилась на оставшиеся 200Дж.
10	8 Для решения данной задачи необходимо вспомнить уравнение Менделеева- Клапейрона PV = ν RT
11	4 Сумма кинетических энергий хаотического движения всех частиц тела относительно центра масс тела (молекул, атомов) и потенциальных энергий их взаимодействия друг с другом называется внутренней энергией.
12	31 Так как система изолирована, а мы видим графики изотермы, можно сделать вывод что внутренняя энергия не изменяется. Но так как объем изменяется, то работа совершается. И когда объем увеличивается, работа положительна.
13	левая Силовые линии магнитного поля — это воображаемые линии, касательные к которым в каждой точке поля совпадают по направлению с вектором магнитной индукции Они выходят из северного полюса магнита и входят на южном их направление совпадает с направлением северного конца магнитной стрелки. Магнитное поле вихревое - у линий нет начала и конца, они замкнуты. Вокруг всякого проводника с током существует магнитное поле которое, силовые линии которого лежат в плоскости перпендикулярной проводнику с током, и направлены по правилу правого винта. (где поступательное движение винта это направление тока)
14	0,5 При последовательном включении резисторов в цепь, токи по ним идти будут одинаковые. Количество теплоты выделяющееся на резисторе в цепи $Q = I^2Rt$ Получается 3/6=0.5

15	1
13	Близорукость— это дефект (аномалия рефракции) зрения, при котором изображение формируется не на сетчатке глаза, а перед ней.
16	3 Так как по условию даны две погрешности- Абсолютная инструментальная, и абсолютная отсчета. Конечная погрешность будет суммой этих двух.(есть еще погрешность вычислений, но не в этот раз) так как обе по условию равны цене деления прибора (по условию) а второй цилиндр наиболее точный тк имеет градуировку через каждые 2см ³ , то результат будет 10+-4.
17	333 При параллельном соединении батареек их ЭДС не меняется а уменьшается внутреннее сопротивление, а значит сила тока в цепи увеличивается. При параллельном включении ламп напряжение на них будет одинаковое а ток будет делиться обратно пропорционально сопротивлению каждой из них. Выходит что ничего не изменится, тк мы увеличили нагрузку в цепь и одновременно увеличили мощность источника.(одинаковой кратности в 2 раза)
18	41 Линия под буквой А показывает изменение напряжения на конденсаторе, а линия Б изменение напряжения в катушке. Период это одно полное колебание.
19	10 Число протонов равно заряду элемента, а число нейтронов равно а.е.м. из которой вычтены протоны.
20	hv=A Красная граница фотоэффекта - минимальная частота света , при которой еще возможен внешний фотоэффект, т.е. начальная кинетическая энергия фотоэлектронов больше нуля.
21	При быстром движении поршня система сохраняет свою замкнутость. (подкачка энергии из вне исключена) Увеличение объема приводит к разряжению (понижению давления) ведь количество молекул постоянно, раз понизилось давление, то понизилась и внутренняя энергия (она прямо пропорционально связана с давлением и с концентрацией(которая тоже понизилась)), а мерой внутренней энергии служит температура.
22	4,120,02 Общее время (исходя из рисунка) будет 41.2с, с погрешностью 0.2с (по условию) Но так как маятник совершил 10 колебаний то все эти значения делятся на 10. Получаем 4.12c+-0,02
23	1 Индукционный ток возникший в контуре создает свое магнитное поле которое противонаправленно полю которым он был вызван. А направление индукции магнитного поля вокруг проводника определяется по правилу правого винта.
24	25 При заданной линейной скорости автомобиль имеет центростремительное $a_{\text{ц}} = \frac{v^2}{R}$ ускорение равное Такое же ускорение должна давать сила трения между шинами и дорожным полотном. Спроецировав на радиальную ось (направленную вдоль радиуса окружности) имеем $ma_{\text{ц}} = F_{\text{тр}}$ $F_{\text{тр}} = \mu N = \mu mg$

25	$R = \frac{v^2}{\mu g} = \frac{100}{4} = 25M$
2.5	600
	Вес груза в лифте определяется следующим уравнением $P = m(g \pm a)$ где знак у 'a' определяется направлением старта лифта.
26	100
	Колебательный контур это замкнутая система состоящая из последовательно включенных катушки индуктивности и конденсатора Период свободных, незатухающих электромагнитных колебаний в таком контуре
	$_{\text{будет}} T = 2\pi\sqrt{LC}$
	Период в свою очередь связан с циклической частотой соотношением $\omega = \frac{2\pi}{T}$
27	1. При замыкании цепи катушки начинает изменяться поток вектора магнитной индукции через кольцо. По закону электромагнитной индукции в кольце появляется ЭДС индукции, возникает индукционный ток. Согласно правилу Ленца взаимодействие токов в кольце и в катушке приводит к тому, что кольцо отталкивается от катушки.
	2. Затем кольцо возвращается в исходное положение, так как индукционный ток препятствует возможным колебаниям кольца на нитях.
	3. Индукционный ток в неподвижном кольце около катушки с постоянным током стремится к нулю, магнитные свойства меди выражены очень слабо, поэтому, вернувшись в исходное положение равновесия, кольцо остается неподвижным.
28	2,33 Когда тело находится в точке максимального подъема его скорость равна нулю. После разделения тела скорости частей направленны вверх и низ. Тогда по закону $m_*V_* = m_0 V_0$
	сохранения импульса получим $m_1 V_1 = m_2 V_2$
	$h = \frac{V_0^2}{2g}$
	$h=rac{V_{1\kappa}^2-V_1^2}{2g}$ Или для первой части тела $h=rac{V_{1\kappa}^2-V_1^2}{2g}$, где V_1 - скорость с которой упала часть тела V_1 =2 V_0 /
	Получим $\frac{V_0^2}{2g} = \frac{(2V_0)^2 - V_1^2}{2g}$; $V_1 = \sqrt{3}V_0$
	Начальная скорость второго осколка может быть определена из формулы
	$y = h + V_2 t - \frac{gt^2}{2}$; $\frac{V_0^2}{2g} + V_2 t - \frac{gt^2}{2} = 0$;
	$V_2 = \frac{g^2 t^2 - V_0^2}{2gt}$
	$\frac{m_1}{m_2} = \frac{V_2}{V_1}, \frac{m_1}{m_2} = \frac{gt\sqrt{3}V_0}{g^2t^2 - V_0^2} = 2,33$
29	12.5 кДж Согласно первому закону термодинамики $Q_{12} = \Delta U_{12} + A_{12}$, где
	$\Delta U_{12} = \frac{3}{2} \nu R (T_2 - T_1)$
	$A_{12} = \nu R(T_2 - T_1)$
	Следовательно, $Q_{12} = \frac{5}{2} \nu R(T_2 - T_1)$.
	$rac{P_3}{T_0} = rac{P_2}{T_2}$ По закону Шарля - $rac{P_3}{T_3} = rac{P_2}{T_2}$ Следовательно, $T_2 = 3T_3$ и $Q_{12} = 5 \nu R T_1$

	В данном случае работа это разность между энергиями конденсатора. $A = \frac{U^2 \Delta C}{2}$ $\Delta C = \frac{\varepsilon_0 S}{d} - \frac{\varepsilon_0 S}{2d} = \frac{\varepsilon_0 S}{2d}$ $A = \frac{CU^2}{4} = 2,5 \cdot 10^{-9} \text{Дж}$
31	2,7 К За время $\Delta t_{\rm B}$ препарате выделяется кол-во теплоты равное $Q=EA\Delta t$, где A - активность препарата, E - энергия одной альфа-частицы. Изменение температуры контейнера определяется формулой $Q=mC\Delta T$ Тогда поучим $\Delta T=\frac{EA\Delta t}{mC}=2.7~{\rm K}$

Обо всех неточностях пишите на почту (с указанием номера варианта и задания): gregory@neznaika.pro

Источник: http://neznaika.pro/test/physics/978-variant-10.html